Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mouza, C (Ed.)During the past decade, many K-12 schools have established makerspaces with 3D printers, digital die cutters, and other fabrication tools. An open-source ecosystem is being developed to facilitate effective use of educational makerspaces. This work is being undertaken under the auspices of the National Technology Leadership Summit coalition, which includes national teacher educator associations in science education (ASTE), educational technology (SITE), engineering education (ITEEA), and mathematics education (AMTE), and the Fab Foundation – a network of more than 2,500 Fabrication Laboratories (Fab Labs). This effort is supported by a National Science Foundation Pathways to Open-Source Ecosystems Phase I planning grant (NSF No. 2229627).more » « less
-
Long-term snowpack decline is among the best-understood impacts of climate change on water resources systems. This trend has been observed for decades and is projected to continue even in climate projections in which total runoff volumes do not change significantly. For basins in which snowpack has historically provided intra-annual water storage, snowpack decline creates several issues that may require adaptation to infrastructure, operations, or both. This study develops an approach to analyze vulnerabilities and adaptations specifically focused on the challenge of snowpack decline, using the northern California reservoir system as a case study. We first introduce an open-source daily time-step simulation model of this system, which is validated against historical observations of operations. Multiobjective vulnerabilities to snowpack decline are then examined using a set of downscaled climate scenarios to capture the physically based effects of rising temperatures. A statistical analysis shows that the primary impacts include water supply shortage and lower reservoir storage resulting from the seasonal shift in runoff timing. These challenges identified from the vulnerability assessment inform proposed adaptations to operations to maintain multiobjective performance across the ensemble of plausible future scenarios, which include other uncertain hydrologic changes. To adapt seasonal reservoir management without the cost of additional infrastructure, we specifically propose and test adaptations that parameterize the structure of existing operating policies: a dynamic flood control rule curve and revised snowpack-to-streamflow forecasting methods to improve seasonal runoff predictability given declining snowpack. These adaptations are shown to mitigate the majority of vulnerabilities caused by snowpack decline across the scenario ensemble, with remaining opportunities for improvement using formal policy search and dynamic adaptation techniques. The coupled approach to vulnerability assessment and adaptation is generalizable to other snowmelt-dominated water resources systems facing the loss of seasonal storage due to rising temperatures.more » « less
-
PREMISE: Distyly, a plant breeding system characterized by two floral morphs that have reciprocal positioning of anthers and stigmas, is known from at least 27 angiosperm families, making it an excellent example of convergent evolution. The various manners in which patterns of floral development produce the distinct anther and stigma heights in each morph remain largely unexplored from developmental and evolutionary perspectives. METHODS: In 15 species representing at least 12 origins of distyly, heights and lengths of floral organs in each morph throughout development were examined using light microscopy. Patterns of floral organ development were determined and compared among species. Family-level phylogenies of distylous species and relatives were reconstructed, and patterns of ancestral herkogamy were resolved. RESULTS: Differences in floral development between morphs resulted in 12 patterns leading to the anther and stigma positions characterizing distyly. Distylous species evolved from ancestors with different types of herkogamy, with approach herkogamy and lack of herkogamy resolved most frequently. CONCLUSIONS: Seven of the 12 patterns of floral development are known from only one species, with three other patterns described among pairs of close relatives. The most common pattern of floral development, described from at least seven genera, involves for anther heights, distinct intermorph growth rates and for stigma heights, growth rates that differ between morphs only during later development. This pattern is common among subclass Lamiidae, suggesting canalized development within the taxon. Among distylous species, the same type of ancestral herkogamy can give rise to different patterns of floral development. KEY WORDS breeding system; convergent evolution; distyly; herkogamy; heterostyly; phylogenetics.more » « less
-
The Chihuahuan Desert includes many endemic angiosperm species, some having very restricted geographic ranges. One of these species is Oreocarya crassipes (I. M. Johnst.) Hasenstab & M. G. Simpson, an endangered distylous gypsophile from the Trans-Pecos region in southern Brewster County, Texas, USA. The species is known from 10 populations, and this small number of populations, human development in the area, a distylous breeding system, and edaphic requirements threaten the long-term viability of the species. Using both hundreds of single nucleotide polymorphisms identified via tunable genotyping-by-sequencing (tGBS) and 10 microsatellite loci, patterns of genetic diversity, demography, selection, and migration were examined for 192 individuals from four populations of O. crassipes. From the sampled individuals, two populations (clusters) were identified via multiple methodologies and with both types of data. With SNP data, population substructure was further resolved among one of these populations to identify two distinct groups of individuals. Multiple individuals recognized as having mixed ancestry, along with Fst values and AMOVA results, provide evidence of genetic exchange among populations, which is less common for gypsophiles than non-gypsophiles, and the rate of migration among populations has been increasing recently. The Fst values for O. crassipes are more similar to those of other rare species than to other gypsophiles. Additionally, while distyly specifically does not necessarily impact the population genetics of the species, allogamy, which is facilitated by distyly, seems to have played a role in the genetic structure of O. crassipes.more » « less
-
Abstract Diel vertical migration (DVM) is common in zooplankton populations worldwide. Every day, zooplankton leave the productive surface ocean and migrate to deepwater to avoid visual predators and return to the surface at night to feed. This behavior may also help retain migrating zooplankton in biological hotspots. Compared to fast and variable surface currents, deep ocean currents are sluggish, and can be more consistent. The time spent in the subsurface layer is driven by day length and the depth of the surface mixed layer. A subsurface, recirculating eddy has recently been described in Palmer Deep Canyon (PDC), a submarine canyon in a biological hotspot located adjacent to the West Antarctic Peninsula. Circulation model simulations have shown that residence times of neutrally buoyant particles increase with depth within this feature. We hypothesize that DVM into the subsurface eddy increases local retention of migrating zooplankton in this feature and that shallow mixed layers and longer days increase residence times. We demonstrate that simulated vertically migrating zooplankton can have residence times on the order of 30 days over the canyon, which is five times greater than residence times of near‐surface, nonmigrating zooplankton within PDC and other adjacent coastal regions. The potential interaction of zooplankton with this subsurface feature may be important to the establishment of the biological hotspot around PDC by retaining food resources in the region. Acoustic field observations confirm the presence of vertical migrators in this region, suggesting that zooplankton retention due to the subsurface eddy is feasible.more » « less
-
Abstract Liquid xenon time projection chambers are promising detectors to search for neutrinoless double beta decay (0 $$\nu \beta \beta $$ ν β β ), due to their response uniformity, monolithic sensitive volume, scalability to large target masses, and suitability for extremely low background operations. The nEXO collaboration has designed a tonne-scale time projection chamber that aims to search for 0 $$\nu \beta \beta $$ ν β β of $$^{136}$$ 136 Xe with projected half-life sensitivity of $$1.35\times 10^{28}$$ 1.35 × 10 28 yr. To reach this sensitivity, the design goal for nEXO is $$\le $$ ≤ 1% energy resolution at the decay Q -value ( $$2458.07\pm 0.31$$ 2458.07 ± 0.31 keV). Reaching this resolution requires the efficient collection of both the ionization and scintillation produced in the detector. The nEXO design employs Silicon Photo-Multipliers (SiPMs) to detect the vacuum ultra-violet, 175 nm scintillation light of liquid xenon. This paper reports on the characterization of the newest vacuum ultra-violet sensitive Fondazione Bruno Kessler VUVHD3 SiPMs specifically designed for nEXO, as well as new measurements on new test samples of previously characterised Hamamatsu VUV4 Multi Pixel Photon Counters (MPPCs). Various SiPM and MPPC parameters, such as dark noise, gain, direct crosstalk, correlated avalanches and photon detection efficiency were measured as a function of the applied over voltage and wavelength at liquid xenon temperature (163 K). The results from this study are used to provide updated estimates of the achievable energy resolution at the decay Q -value for the nEXO design.more » « less
An official website of the United States government

Full Text Available